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’i“xn the: design of optimal control sysiems, emphasis is pi.cad on the accuraqy

7 of _the system-mathematical-mode¥. If certzin medeling parameters deviate from
théir assumed nominal values, the optimal control may not preduce the desired
output; A complete theory_is developed in +his paper for the practical design of
1inear, ncwinaily equ1valnnt feedback compensators which ninimize the output
sensitivity to §)stem pairameier variations. An examele is presented %0 conpare
these compensators with tbcse which regulate and suab1lzze.
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Abstract

In the desisn of optimai control systems, emphasis is placed on the
accuracy of the system mathemutical modeil.
parameters deviate from their assumed nominal vzlues, the optimal
L& coatrol may not produce the desired output.

If certain nodeling

A complete theory is de-

veloped in this paper for the practical design vf linear, nominally _
equivalent feedbsck compensators which minimize the output sensitivity

to systen parameter variations,

An example is presented to compare

“theése compensators with those vhich regulate ‘and stabilize.

= - 1.¢ INTRODUCTION )

;ﬁﬁst.og the work on geniitivity reduction
_in optimal control syst-me (reference 1}

has been with the inclusion of seasitivity
teyxs in the original cost function. This
technique trades off the primary design ob-

- jectives for sensitivily reduction., To
.achieve the latter, however, a sigrificant

Qevgation fror the design goals is usually

‘Tequired. In addition, the original opti-

m21 conlrol cannot be realized when the
aodel paramfters zre at their nomianal
values.

_ In this paper, a cosplete theory for the

practical design of linear feedback compen-

_ ‘satgors which minimize output senmsitivity is

@pgroved‘for'bubli
distrinition walig

-developed. Fsedback is used as a second de-
:gree of freedom in the optinal control prob-

iem to generate a nominally equivaient con-

“trol function. This function is determined

by minimizing the.mesn squars and final
value first order sensitivity with a cor-
respoading linitation on the required feed-

‘back. effcrt. Necessary and sufficient condi-

tions are developed from which an expiicit

:néﬁitergtivé solution is obtained for the

linéar;feedbaik'gaig term. A comparison ex-

-ample is presented to show the superior

‘sensitivity reduction characteristics of tke

Minimum sensitive gain function relative to

tegulating and 3tabilizing contruls.

¢ releasg;
ited; -

2.0 MINIMUM SENSITIVE CQyTRdL
2.1 PROBLEM STATEMENT
The soluticn cf an cptimal control problea
over the time interval [0,T] can de de-
scribed by the following differential
equation:
in = £(t,x,,8,,0,)5 X,00) = x ., 1)

where x, u and = are of dimensions n, r and

n respectively and the subscript n repre-

. sents rcminal or design values. The func-

tior f(<} is assumed to be continuous in t
and C} WRT x, u and n. The solution of {1)
is given by: ’

2 (t,5.) = x,(2) (2
which is the desired optimal trajectory.
When the optimal control is inmplemented in
the actual systee, variaticns in modeling
parametels a3 « a-r, may Tesult in the out:
put x{t) deviating significantly fro= the
desized ovtput %,(t). To reduce the outpuc
errors ciusced Dy parameter variations, 2
néninally equivalent feedback control func-
ticn is defined us follows: -

u(t,x} « u;(2) + KEOx(t} - )

where K(tj is an (r x n) matrix of time

functionz arpd “i(t) is deterained such thxt 7

u(tax,) = g (0. o )

The corresponding closed loop systez is
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thus
x = £(t,x,u(t,x),n); x00) = x,, (5)

where n is the sctual parameter vector. As-
suming that initial condition errors are
accounted for in un(t), the problem is to
deteraminek(t) such that, for small vari-
ations sn from the rominai parameter n ,
the actual trajectory x(t) remains ciose to
5u(t) over the criginal optimization in-
terval. It is assumed that n is known to
‘Within a scalar constaat,i.e., n = n.ﬁ
where L is an unknown magnitude operating
through a kaown di-ection §. From equations
(3) and (5), the first order sensitivity
vector gjt) reiative to ng is described by
$ = A(r)s. ¢ B(t)K{t)s + g(t); s(o)=s, (6)
where A, B aad g reprzsent the partial de-
rivatives of (5) WRT x,u(-) 2ad n, respec- .
.- tively evaluated alonyz the nominal. The
initial value of the sensitivity iegtor £
will nocrmally be zerc since the parameter
will usually nct affect the initial state

Zny°
* The sensitivity cost function ic defined as

‘follows. Two measuras of output sensitivity
are

-

sTqudt

‘final valse = €1/2)s! (T)Ds(T)
where Q and D are positive semi-definite _
matrices which are continucus in timc. The
system error is limited by restricting the
-amouat of fesdback K(t)x(t) or equivelently
K(t)s{t). This restriction can be included
in the cost by she addition of

mean square = (IJZ)IT
°

o= /T E FRLK 252]dt
M SR LN E S i
where R;; > 0.and contiauous in time ¥i,j
This restricts eack state fesdback compon-
o - @it of the ctontrol. The function F; can be
combined with the output semnsicivity.mess-
ures to ~igid the following cost functionsi

4,,?;&— %s_ﬂr__}erﬁj-frﬂﬂss—,‘_r cf'\vmﬂ‘%‘ﬂ— e N

I = /st mosm + /2) st
[}

r n
* p (7
i-l J-1R13Kxj j]dt
which effectively trades off the cost of
feedback for reductions in output sensitiv-
ity. The problem is thus to determine K(t)

such that (7) is minimizea subject to (6).
2.2 NECESSARY AND SUFFICIENT CONDITIONS

Necessary -conditions for this problem can
be obtained from straight{forward applica-
tion of variational methcds given in [2).
The Hamiltonian is defined as follows:

’Q's'”"iqu

+p'[As + BXs « gl.

“1 (t,i;x,n) ~' - ij‘i

()
Using this, tie optimal gain components
aTe given by

n
K;: ® e 2 p B (9
Rt"j t.l:pl'- 2 *( )
with canon;cal equations
p= -AT P+ Qs; p(T) = -Ds %3] 10)
and T
sersemdpeg s e0 Oy

where tke {r x r) matrix V is defined by

n
iti -
*r £y :
- 23 -
‘l‘y ) 712)
0 1y

The canonical equations are time invarismt
whenever the sensitivity equations and cost
matrices sre independent of time. The limd-~
arity therefore sllows a closed form solu-
tion for the gain terms given by (9), Note
that since g, = 0 any value of K(0) will
satisfy the optimality conditions. In prac-
tice, Lovever, an initial bound must be
determined for K(t). The Legendre cond2%3za-
is cbtained from {8) s = -

M/ 2 - Ry 5240

Qas3)-

1 =0 i,5ft.m

d
-

A s b or o L M AR b

b
it

o e

ol o

Bl Wi M,

Wit 1

it

4

it il o,k bt

ik R B b

b hobinand b0 b o

i

m

PR T T




R

i ,ﬂ."%j ‘g.‘qmﬂ"ﬂ{ﬂ;m‘

R
¥

A

.
4

AT L
!

{
1

R WY

T ]

B T R U

i

L

ik

e

£
%

=
)
i

¥
i
£
=

g g e i Y

v

i

ROt e Lo it AR AR A

pr iy

The Weierstrass nccessary condition s im-
plied by (13) when the extremal is non-

singular (Y¥eference [2]). Sufficient condi-
tions are defined by the following theorem:

Yheorem 1: The gain matrix K(%) given by
79), (10) and (11) exists on (0,T) as a
sinivum of (7) subject to (6) if

sjz(t)a»o ¥te (0,T] (14)
where s.(t) is the jtP coaponent of ths
solution to (6).

Proof: From (13) and (14), reference [2]
indicates that sufficient conditions are
satisfied if there are no conjugate points.
Since the matrices D, Q and R ars positive
_semi-definite, it Can be shown that no con-

jugate points exist. This cozpletes tae
ptoof .

From the above theorsa, the existence of
the minimum sensitive gain is determined
meinly by {14} which is a sonewhat strong

~ condition and definitely not satisficd for

“arbitrary cost paramgeters D, Q and R in

(7) and acbitrary functions g(t) in (11)..
This is, however, the price of achieving
linearity:of the canonical equations (20)
and {11). For a given systea, cost Sunction
and nominral trajeciury, these equations can
-easily be scived to determine if (24) is
satigfied. If not, the nonsingular approxi-
mate prodlem jormulated in th? next section
can be employed to obtain the optimal gain.

3.5 A NONSTINGULAR SENSITIVITY PROBLE:

The. results of the previous sectios indi-
cate that singular solutions of the miniaum
sensitivity problem are the major cause for

. failure of the existence conditions. The

problea will be reformulated in this sece
tion such that all extremals are nonsingu-
lar. As a consequence, the canonical equa-

- tions Secome nonlinear and must be solved

be approximation oy iteritive tachaniques.

and

3.1 WECESSARY AND SUFFICIENT CONDITIONS

Examination of (9) and (14) reveals that
_singularities in the optimal gain are syn-
onymous with singular cxtremals. The cost
function (7) will therefore be modified tn
include a penslty term for large feedback
gains as follows:

3 = 3sT(mps(m) +

e I lugrgeengy O
- .:-K $ + K.
a1 5.1( ij 13 *5 ij7ij )

1 TisTos + Glae
o

and E;.> 0 ¥i,j. The Hamiltonian for tke
problem of minimizing {15) subject t8-(6) is

Ha(t,s,K,p) =-3 3°qs - G * p'[As + BKs * gl.
(16)
Using this, the optimal gain components are

given by

s.
* ———l By - Q7)

K
. ij 2 hd P‘
Rijsj + E t=1

i;

.

with canonical equations

2= -A"p *+ Qs + B(s,p);: R(T) © -Ds(F) - (18)

3= As + BL(3)B"p + g; s(0) = 0 a9

where the components of m are defined by

T Ei. n 2
m, = - T 20
j i.l(k. .s 2 Ei 32 L pl ll] ( ]

and the (r x r) natrix Z is defined bdy

n . s.2 -
r = n

2
. m=f R‘.s. . E

2y 21)
0 iy

L=y

The cancnical equations are thus nonlinear

in s and p. The Legendre condition is ob-
tained from {1C)

2

'(Rijs;- * Eij3<f° i", j'.
(22)

0 othervise.

-
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The Weierstrass necessary conditioq is im-~
plied by (22) since the extremal is non-
singular.

The existence of the optimal gain can be
directly proven using Theorem- 5 of [3].
With some manipulation, all required hy-
potheses can be shown to apply. The most
difficult is the determination of the con-
stant C for the system and cost inequali-
ties, This can easily be obtained if the
term

£=.cr0,m ls@i

is added to the cost J(K), noting that the
minimizing gain will be unaltered. Cesari's
Thecrem is also gpplicable to the vector
case when Rij = 0,¥i,j. In general Ri >0
for sore i,j and then the theorem cannotbe
applied sincte the gain and state- teims are
not functionally separable. It is probable,
however, that a slight modification can be
made to the theorea to prove existence for
the general case.

3.2 SOLUTION TECHNIQUES

Since the canonical equations (18) aznd (19)
are nonlinear, they must be splved either
by iteration (gradient) or approximation
techniques. If it is assumed that Eij is
small ¥i,j and that the sensiiivity terms in
the codt hive sufficieunt weight such that
3(t) is small, then {18) and (19) can be
appraximated by a set of linesr equations.
These assumptions result in m{:) =0 over
[0,T]. Since E;5>0 ¥i,j and s{0) = 0, £21)
indicates thst Z{0,E) = 0. The sensitivity
equation (19) thsrefore initially runs open
loop. As the magauitude of g£(t) increases, -
the- matrix Z(s,E) approaches V for small
bi. Equations (18) and (19} will thus be
approxiaate& as follows:

p=-ATp+qs; p(1) = -Ds(M  (23)

L. TR 1310000 ;0stsT) 2
'!.2 - Ai“‘;" SWTE’& ;_3,2 (Tl)."-l ql) ;Tl<t§T

where ’l‘le (0,T) is a design parameter and
5;(¢) 0stsT
gz(t) T1¢t£T

1 (25)

s(t)=
Equations (23) - (25) can be explicitly
solved as a coupled system. The optimal gain
K(t) is-then determined by (17).

The relationship vetween the approximate
solution given above and that of the singular
problen described in .Section 2.0 is as fol-
lows. The approximation effectively reduces
the time interval of optimization and, in
doing so, generates an initial sensitivity
vector consistent with g(t). The problem re-
sulting from some components of s(t) approach-
ing zero on (TI,T}'still remains, although
this in part dictates the choice of Tl' ¥hen
this occurs, the approximation of Z by V on
CTI,T] is no losnger valid. The choice of T

is further complicated by the fact that the
desired output sensitivity may not be at-
tained if T “is too large. When this approx‘-
mation cannot be used, recourse aust be xade
tc iteration techniques. -

4.0 COMPARISON EXAMPLE

The question examined in this section is
how much better does the minimum sensitive
(MS) gain perform relative to regulator (RG)
pnd stabilizing (ST) gains? A £irst order
example will be described below. ’

Let the original design system (nominal) be
given by

x = a,x*u 3 x() =10 (26)
where a = 1 and un(t) is determined from
minl 1
u & To(x2 + .2u?)de 27

From Section 2.0, the feedback cospensator
is given by
u(t) = u a(t) ¢ k(t)ly(t) - x,(%)] (28

where X, is the optimal solution of (26}.
The actusl (real world) system i3 repre-
scnted by

=
=

1 .
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y » 2.2y > u(t) ; y(0) = 10 (29)
where the parameter was varied 20 percent

. gains when parameter variatiuns occurred.
in the unstable dicection. Two measures of

| syctem error are

3
1 ¢ T 1
Msan Square = / (y-xn)zdf, (390) Pl;:o:c: ¥t}=:s‘ .o
By
Final Value = |y(1)-x (1)] . 2 ,

The cost of using feedback is measured by

1
Feedback Coust = [ (u-un)zdt . n
o

.
-

Note that if (29) is run open loop (k(t)=0)
then umu, and no cost penalty is incurred.

Nean Square Error

N e o
e - hadhadied 2l Rodiadiade Sl “~={" Errcy
< \

The MS compensator is determined as a solu- 0
tion to the °ollowing problem

2 .4 .6 2 1.0 1.2
Feedback Cost

- 1
.iu{%dsz(l) + % I (as2 + kzsz)dt] (32) __Figure 1. Nesn Scuare Error Cosparison Curves
o

subject to
1.2

s=as+ds v x (t); =(0) =0 (33) ,..,é.“: Veldes
which corresponds to that posed in Section \ §-f- s: %Eig: 4‘ : 3
2.0. The regulator gain can also be ob-
tained fror (32) and (33) but with xn(t)-o
und 3(0)#0. For the €irst order case, the
stebilizing yain is s negative constant.

N\~ 1
\:\

The comparison curves for the minimum sensi- ;i.k.}?.‘ ‘,’_g::
tive, regulator and -tabilizing gains are Ercor
shown in Figures 1 snd 2. For this example, °z “ I 3 3.0 1.2
a suizable goal for errcr reduction with Sesdback Cost -
feedback was taken as 10 percent of the
open loop error. To achieve this reduction,
the figures indicate that the minisium sensi-
tive gain requires at least 30 percent less
feedtack effort than the regulator and

Final Error
r

Figure 2. Fiasl Errar Comparison Curvet
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